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Abstract
We have analyzed various sensor deployment scenarios that maybe used to monitor CO2
injection as part of the Southeast Regional Carbon Sequestration Partnership (SECARB), 
Gulf Coast Stacked Storage Project. This scoping study used a stochastic inversion 
technique to reconstruct the subsurface CO2 plume using as input several types of data. 
The technique used, Monte Carlo Markov chain (MCMC), jointly inverted borehole 
temperature data, downhole tilt data, crosswell resistivity data, crosswell seismic velocity 
tomograms, and injected CO2 volume data. The study assumes that the measurements are 
made using two observation wells that are coplanar with the injector well. The study 
suggests that the MCMC approach can be used to formally integrate all of the types of 
data considered, including production and injection data. It also suggests that it is 
possible to obtain to reasonable plume reconstructions when any one of the cross-well 
methods is used in combination with temperature logs and injected CO2 volume data. 
Finally, the 3D fidelity of the plume reconstruction is highly sensitive to the observation 
well geometry. The 2D well geometry considered here predicts the 3D geometry of 
plumes poorly. This approach can be applied to any large injection project, including 
commercial efforts and the phase III demonstrations.

This work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Introduction:
Monitoring and verification of CO2 in the subsurface remains an important task for 
geological CO2 storage. This will likely involve the collection and integration of multiple 
geological, geophysical, and geochemical data sets within the context of some reservoir 
model. We have developed a computational tool to more realistically render subsurface 
liquid plumes (e.g., CO2, steam, water floods, tank leaks) and their reservoirs using 
multiple geophysical techniques.

In this study, we have analyzed various sensor deployment scenarios that maybe used to 
monitor CO2 injection as part of the Southeast Regional Carbon Sequestration 
Partnership (SECARB), Gulf Coast Stacked Storage Project (GCSSP), Cranfield site. 
This proof of concept test seeks to demonstrate that the stochastic inversion approach 
used will successfully integrate the disparate data types that may be collected during the 
GCSSP. The test results show how well the 3D geometry and C02 volume can 
reconstructed for the various sensor packages considered.

We assumed two observation wells at the Cranfield site, coplanar with the injector well 
(refer to Figure 1). This well arrangement was chosen in consultation with Tom Daly 
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(Lawrence Berkeley National Laboratory). It maximizes the ability to track the growth of 
the plume with time up-dip from the injector well. The sensitivity and resolution using 
this arrangement is largely two dimensional: the length and vertical extent of the plume 
can be resolved but the off-plane shape and the width of the plume cannot be determined 
uniquely.

Figure 1 shows that two plume sizes were considered. We assumed that the CO2 plume 
grew as function of time and that time-lapse data is available. The plume’s thickness, 
horizontal and vertical extent increases as additional CO2 is injected. The two plumes 
contain 664 and 7538 m3 of CO2. The average CO2 saturation for both plumes is 40%. 
The center of mass for each plume is located at a depth of 3050 m.

Our test assumes that the following measurements will be made during the injection test:
injected C02 volume
temperature logs collected within the two observation wells in the depth range 

3000 – 3090 m.
tilt surveys collected using a total of 18 sensors located in the two observation 

wells on a 3 m spacing; the sensors are located in the depth range 3009 – 3081 m .
seismic tomogram of P velocity changes that has been converted into a map of 

CO2 saturation using a suitable petrophysical model; the tomogram extends from the 
injector to observation well 2, and from depth 3009 to 3081 m. The pixels on the 
tomograms are 3 by 3 m.

crosswell electrical resistivity surveys collected using a total of 27 electrodes 
located outside of the injector and observation wells using a 3 m spacing; the electrodes 
are located in the depth range 3009 to 3081 m.

The crosswell techniques (seismic, resistivity and tilt) will exhibit the greatest sensitivity 
and resolution to parts of the plume between the injector and observation well 1. The 
sensitivity and resolution between the two observation wells is much worse due to the 
greater distance between the plume and the sensors.

We consider the results of this test preliminary. A full analysis of the results could not be 
conducted due to tight budget constraints. Many of our assumptions are overly optimistic: 
a) measurement uncertainty is considered negligible, and b) the uncertainty associated 
with converting each plume realization from CO2 saturation to various the observables 
such as temperature, P wave velocity and tilt is assumed to be negligible. These 
uncertainties are not well understood and require further research.

Conversion of CO2 saturation to the various observables
We assume that a CO2 plume can be represented by a series of contiguous blocky regions 

that are:
embedded within a porous medium 
either connected or adjacent to the other plume regions,
one of the blocky regions is near the injector well
each blocky region has constant co2 saturation in the range 0 to 100%.
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Our stochastic approach proposes randomly chosen CO2 saturation models that are tested 
against all available data. This means that we need to convert each plume realization 
from CO2 saturation to some other dimension (e.g., reservoir deformation, temperature, 
bulk electrical resistivity).

We use Archie’s equation to convert the CO2 saturation model to an electrical resistivity 
model. We assume that the CO2 does not change the electrical properties of the native 
pore water or the silicate substrate, and that temperature changes in the reservoir do not 
significantly affect its electrical resistivity; we do not know how valid this assumption is. 
The electrical resistivity model is used to solve the forward problem and calculate the 
resistivity data predicted for each plume model. This calculation is the most computer-
intensive part of our method. Specifically, the runs that used resistivity data required the 
use of 216 CPUs running for 12 hours in a large parallel cluster.

To compare each CO2 saturation model to a measurement of injected CO2 volume we 
assume that the connected porosity in the reservoir is 25% on average.

We assume that the temperature will decrease from 125 to 124.8 C as the CO2 saturation 
changes from 0 to 100%. This allows us to directly compare the temperature 
measurements and the CO2 saturation models proposed.

We assume that the bulk pressure changes in the reservoir are directly proportional to the 
CO2 saturation of the reservoir layer. This allows us to convert the CO2 plume model to a 
reservoir deformation model (used to solve the tilt forward problem). The predicted and 
observed tilt data can then be compared. We recognize that there is significant 
uncertainty in this conversion because CO2 saturation – pressure relationship is not well 
known, and it is possible that the correlation between the two is poor. This issue will be 
addressed in future tests.

The changes in P velocity detected by seismic tomography are converted by to CO2
saturation using a suitable petrophysical model such as a modified Gassman model that 
assumes that CO2 saturation occurs in patches. We assume that the tomogram recovers 
the changes in P velocity without distortion. We also assume that the conversion from P 
velocity change to CO2 saturation is error-free. The uncertainties associated with this 
conversion are not well understood and are being evaluated by ongoing research (Tom 
Daily, LBNL, personal communication). The estimated CO2 saturation map is used as 
input to the MCMC inversion and directly compared to the CO2 saturation in the 
proposed plume models. 

Description of stochastic inversion approach:
A detailed description of our stochastic inversion approach can be found in Ramirez et 
al., 2005. Here we present some of the key ideas. The tool uses statistical theory and 
geophysical forward models to compute images of the subsurface CO2 plumes. It 
produces plume images that are consistent with disparate data types such as 
measurements of injected plume CO2 volume, ground deformation measurements (tilt, 
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gps, InSAR), and cross-borehole electrical resistivity measurements. Joint reconstruction 
of these data allows better plume images to be computed. Our reconstruction method uses 
Bayesian inference, a probabilistic approach that combines observed data, geophysical 
forward models, and prior knowledge (e.g., measurements of the injected CO2 volume, 
knowledge that the plume should connect to injector). The result is a sample of the likely 
plume models that are consistent with the data collected. The method uses a Markov 
Chain Monte Carlo (MCMC) technique to sample the space of possible plume models, 
including the shape, location and CO2 content of the plume. MCMC is a proven 
technique that uses a random-walk type procedure to sample possible outcomes given all 
available data. 
Attractive features of this approach are:

• Joint Reconstructions: Results are consistent will all available data. Disparate data 
types such as surface tilt, electrical resistivity, and tilt showing likely permeable 
pathways are simultaneously used to compute the results.

• Realistic models: Geophysical inversion is typically an ill-posed problem 
requiring regularization. The SE is stabilized by prior information instead of the 
often unrealistic regularization techniques (e.g. smooth models) used by 
traditional inversion approaches. 

• Estimates of uncertainty: The method provides quantitative measures of the result 
uncertainty.

• Alternative models: The SE will identify competing models when the available 
data is insufficient to definitively identify a single optimal model. The SE will 
also provide the probability that a given model is the best explanation for the 
available data.

• Sensitivity: The unique sensitivity of each data type is preserved and formally 
included in the analysis.  For example, electrical methods are very sensitive to 
pore fluid character and surface deformation measurements are sensitive to 
reservoir pressure changes caused by the injected fluid.

Results and Discussion
Our tests considered various combinations of instrumentation packages that could be 
deployed to monitor the CO2 plume during the GCSSP. The simplest package may 
consist of temperature sensors (or logs) deployed in the observation wells and a 
flowmeter in the injector well that measures injected CO2 volume. A more complex 
package may include additional measurements such as crosswell seismic, crosswell 
resistivity, and downhole tilt sensors. In all our simulations, we assumed that injected 
CO2 volume and borehole temperatures were always measured because these 
measurements are relatively cheap and easy to make. Other simulations included various 
combinations of the crosswell techniques (seismic, resistivity, tilt).

As expected the best results are obtained where two of the crosswell techniques are 
deployed simultaneously with temperature surveys and injected volume. Figures 2a,b and 
3 a,b show results that illustrate this. 
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The figures show map and side views of the two best plume models, i.e., the models that 
best fit all the available data; the model on top fits the data somewhat better. The MCMC 
inversion approach identifies and ranks competing models when the available data is 
insufficient to definitively identify a single optimal model.

The diagram on the top left indicates the different types of data used for the run; for 
example, the results in Figures 2a,b were reconstructed using CO2 saturation 
tomography-seismic, crosswell resistivity, temperatures and injected volume data. The 
dimensions of the 3D block that contains the plume model are shown in Figure 1. White 
dots (map view) and vertical lines (side view) indicate the well locations. The outline of 
the “true” plume is shown by the ellipse and rectangle (map and side view, respectively). 
The color of the plume indicates the CO2 saturation level (40% in the “true” plume, 
indicated by an aqua color). The figures also show the total CO2 volume present within 
each plume; for the small and large plumes, the “true” volumes are 664 and 7538 m3.

Figures 2 and 3 indicate that the length and vertical extent of the plume are recovered 
reasonably well along the plane defined by the wells. Also, the estimated total CO2
volumes are within 35% of the “true” model for the larger plume (Figs. 2a, 3a). For the 
smaller plume (Figs. 2b, 3b), the estimated total CO2 volumes are within 300 % of the 
“true” model. The off-plane shape and size of the plume is not recovered well because the 
coplanar well arrangement does not offer the coverage required to resolve the plume in 
the off-plane direction. 

The remaining figures show results that use fewer measurement techniques. For example, 
Figure 5a,b shows the models estimated using downhole tilt, temperature and injected 
volume data. The shape and size of the plume in 5a are similar to those in Figure 3a 
where the measurement package also included the CO2 saturation tomogram based on 
seismic velocity differences. This suggests that one may get reasonable results obtained 
using just one crosswell technique (tilt) instead of two (tilt and CO2 tomography-
seismic). This conclusion needs to be considered preliminary because the uncertainties 
associated with each of these techniques has been assumed to be negligible and we know 
that this is overly optimistic. Similar comments can be made regarding Figures 4a and 2a 
where crosswell resistivity and seismic data are considered.

Summary:
We have performed numerical simulation experiments to evaluate various sensor 
deployment scenarios that maybe used to monitor CO2 injection as part of the GCSSP. 
We have used a stochastic inversion technique to reconstruct the subsurface CO2 plume 
using several types of data: temperature data, downhole tilt data, crosswell resistivity 
data, crosswell seismic velocity tomograms, and injected CO2 volume. The results of the 
study suggest that the stochastic inversion approach can be used to formally integrate all 
of the types of data considered.

The study assumes that there will be two observation wells at the GCCSP’s Cranfield site 
that are coplanar with and updip from the injection well. The results indicate that this 
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well arrangement provides the sensitivity/resolution needed to reconstruct the 2D 
characteristics of the plume along the plane defined by the wells. Also, the time evolution 
of the plume updip from the injector can be successfully monitored with this 
arrangement. However, the off-plane plume characteristics are reconstructed poorly. 

The study suggests that it is possible to obtain to reasonable plume reconstructions when 
any one of the cross-well methods is used in combination with temperature logs and 
injected CO2 volume data.

The results and conclusions of this study are preliminary because many of the 
assumptions are overly simplistic and optimistic. In particular, the uncertainty associated 
with converting each plume realization from CO2 saturation to various the observables 
such as temperature, P wave velocity and tilt needs to be properly understood and 
included in the modeling. This aspect will be addressed in future research.
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Figures

Figure 1 shows details of the two plume models used for this test. The CO2 saturation 
within each plume is 40%.
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Figure 2a shows the two plume models (large plume) that best fit all of the following data 
sets: temperature logs, CO2 injection volume, cross-well resistivity data and a tomograpm 
of CO2 saturation based on seismic P velocity changes. The outline of the “true” plume, 
the location of the wells and the estimated CO2 volume associated with both plume 
models are shown. 
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Figure 2b shows the two plume models (small plume) that best fit all of the following 
data sets: temperature logs, CO2 injection volume, cross-well resistivity data and a 
tomogram of CO2 saturation based on seismic P velocity changes. The outline of the 
“true” plume, the location of the wells and the estimated CO2 volume associated with 
both plume models are shown.
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Figure 3a shows the two plume models (large plume) that best fit all of the following data 
sets: temperature logs, CO2 injection volume, a tomogram of CO2 saturation based on 
seismic P velocity changes, and downhole tilt.
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Figure 3b shows the two plume models (small plume) that best fit all of the following 
data sets: temperature logs, CO2 injection volume, a tomogram of CO2 saturation based 
on seismic P velocity changes, and downhole tilt. 
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Figure 4a shows the two plume models (large plume) that best fit all of the following data 
sets: temperature logs, CO2 injection volume, and crosswell resistivity.
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Figure 4b shows the two plume models (small plume) that best fit all of the following 
data sets: temperature logs, CO2 injection volume, and crosswell resistivity.
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Figure 5a shows the two plume models (large plume) that best fit all of the following data 
sets: temperature logs, CO2 injection volume, and downhole tilt.
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Figure 5b shows the two plume models (small plume) that best fit all of the following 
data sets: temperature logs, CO2 injection volume, and downhole tilt.
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Figure 6a shows the two plume models (target: large plume) that best fit all of the 
following data sets: temperature logs, CO2 injection volume, and a tomogram of CO2
saturation based on seismic P velocity changes.
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Figure 6b shows the two plume models (target: small plume) that best fit all of the 
following data sets: temperature logs, CO2 injection volume, and a tomogram of CO2
saturation based on seismic P velocity changes.
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